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Abstract. Hydrodynamic dispersion in random network models of porous media near the 
percolation threshold is investigated. This is done by studying the random walk of a 
particle in Row through the random network. Various scaling regimes (which depend on 
the Peclet number which is the ratio of diffusion and convection times) are identified, and 
the scaling relations for the mean-square displacement of the walk, both in the direction 
of macroscopic Row and in directions perpendicular to the macroscopic Row, are derived 
and related to those of anomalous diffusion on percolation clusters. It is shown that 
dispersion can give rise to superdifusion in which the mean-square displacements of the 
random walk grow with time faster than linearly, while the spectral dimension of such 
random walks can be significantly larger than two, which is the critical dimension for 
diffusion on fractal systems. We propose a new equation for the probability density of 
finding the random walker at a point at a given time and discuss a method by which the 
probability density for first passage times of the walker can be determined. 

Hydrodynamic dispersion is unsteady mixing of two immiscible fluids displacing one 
another in a porous medium. This mixing process is caused by a chaotic velocity field 
in the porous medium, which in turn is caused by the morphology of the pore space, 
the fluid flow condition, and chemical and physical interactions with the solid surface 
of the pores. Dispersion can be modified by molecular diffusion and the subtle interplay 
between diffusion and the chaotic velocity field gives rise to a phenomenon which is 
considerably more complex, but richer, than that of diffusion alone. Dispersion is 
important to a wide variety of processes ranging from enhanced recovery of oil from 
underground reservoirs and salt-water intrusion in coastal aquifers, to the pollution 
of surface waters by industrial wastes, and heat and mass transfer in  packed-bed 
chemical reactors. Because of its significance, dispersion has been studied for a long 
time (see Scheidegger (1974) and Sahimi (1984) for reviews of dispersion phenomena). 

Macroscopic modelling of dispersion processes in disordered and isotropic porous 
media is usually based on the convective-diffusion equation (CDE) 

aC a2c -+ V, VC = DL T +  D ~ V : C  
at  ax 

where C is the macroscopic mean concentration, t the time, V, the mean flow velocity 
and V: the Laplacian in transverse (perpendicular to the mean flow) directions. Thus 
the basic idea is to model dispersion as an anisotropic diffusion process, the diffusivity 
being the longitudinal dispersion coefficient DL (in the direction of mean flow which 
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is assumed to be the x direction) and the transverse dispersion coefficient DT. Disper- 
sion is said to be macroscopically dijiisiue if it obeys a CDE, in which case C obeys a 
Gaussian (normal) distribution which is the solution of equation (1) with proper initial 
and boundary conditions (see below). However, an approach based on the CDE is 
purely phenomenological and provides no insight into how DL and DT depend on the 
morphology of the pore space. 

More recently, dispersion has been studied in random network models of porous 
media. Sahimi et a1 (1982, 1983, 1986a, b) were the first to undertake such a study. 
They developed a Monte Carlo method by which dispersion is studied by the random 
walk of tracer particles in the flow field. The flow field induces a bias in the network 
in the direction of a macroscopic pressure gradient, so that the motion of the particles 
is a biased random walk. However, the bias is dynamical (since it is flow induced) 
and therefore this bias random walk is significantly different from the previous models 
of biased random walks (see, e.g., Pandey 1984, Stauffer 1985, Michel 1986). In these 
models, it is typically assumed that there is a uniform (and fixed) bias everywhere, 
including the dead-end branches of the network, whereas in our model bias exists only 
on the backbone (the flow-carrying part) of the network. A variety of other methods 
have also been developed for studying dispersion, including the transfer-matrix 
algorithm (Roux er a1 1986), probability-propagation algorithm (de Arcangelis er a1 
1986) and the direct solution of the CDE at the pore level (Koplik er a1 1987). The 
efficiency of these methods depends on the structure of the network. For example, 
the probability-propagation algorithm is very inefficient for dispersion in a percolating 
network. 

In this letter we study the scaling properties of dispersion coefficients DL and DT 
in a random network near the percolation threshold p c ,  which is relevant to the study 
of dispersion in two-phase flow. As the fraction p of conducting bonds (i.e., bonds 
that are open to flow) approaches p c ,  the percolation correlation length tP diverges as 
( p  - p , ) - ' .  The fraction X A  of bonds in the infinite cluster vanishes as X A -  ( p  - p J P ,  
the fraction X B  of bonds in the backbone vanishes as X B  - ( p  - p J P s ,  and the conduc- 
tivity K of the network vanishes as K - ( p  -pc)+.  In analogy with diffusion near p c  
(Gefen er a1 1983) we may expect the scaling of DL and DT to depend on the length 
scale L over which dispersion is studied. Thus, depending on whether L < tp or L >  tP, 
we may expect different scaling regimes for DL and DT. 

We first define a Peclet number Pe by Pe = V a l / D , ,  where I is a characteristic 
length scale of the medium and D, the molecular diffusivity. We may interpret Pe as 
the ratio of the diffusion time I ? /  D, and the convection time I /  V,.  Near pc  a large 
fraction of bonds in the infinite cluster are dead-end and the tracer particles can 
communicate with such bonds only by molecular diffusion. If molecular diffusion is 
slow enough, the tracer particles can spend a long time in the dead-end branches and 
dispersion is dominated by the time that is spent in the dead-end branches. This also 
affects the scaling of V, near p c .  If diffusion into the dead-end branches is ignored 
then one has V a - K / X B - ( p - p c ) ~ - P B - t p B B ,  where f3 ,=(p-pB) Iv .  On the other 
hand, if molecular diffusion in the dead-end branches is the dominating factor, then, 
V a - K I X A - ( p - p c ) ~ ' - P - 5 , e ,  where f3 = ( p - - P ) / v  is the same as the anomalous 
diffusion exponent introduced by Gefen et a1 (1983). Near p c  the only relevant length 
scale (aside from the length of the bonds) is 5,. Moreover, over the length scale 5, 
the molecular diffusivity D, is proportional to D,, the diffusivity of the tracer particles 
in the absence of rheflowjeld,  which is given by D, - ti8. Therefore, the macroscopic 
Peclet number is rewritten as Pe = Vat,/D,. For length scales L<< tP, we should replace 
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6, with L and write Pe = V,L/D, ,  in which case V,- L-' (or V,- L-OB for the 
backbone) and D,-  L - @  (or D,-  L-'B if diffusion is restricted to the backbone). We 
also introduce two random walk fractal dimensions which are given by 

( ~ ~ 2 )  - t'/dl  ( 2 )  

(y2)  = ( 2 2 )  - t2'd:  

for longitudinal dispersion, and 

(3) 

for transverse dispersion. Here ( ) denotes an averaging over the ensemble of all initial 
positions of the particles, and (Ax') =(x ' ) - (x)~ .  We have assumed that the particles 
start their motion at the origin of the coordinates. For diffusion on percolation clusters 
d k  = d :  = d , ,  where d ,  = 2 for normal diffusion and d ,  = 2 + 9 for anomalous (i.e. 
length-dependent) diffusion. Similarly, for macroscopically diffusive dispersion d I, = 
d k  = 2; one goal of our paper is to derive the relations for d k  and dL for the anomalous 
dispersion, which cannot be described and predicted by the CDE. Note that one has 
d(x)/dt - K,, d(Ax2)/dt - DL and d(y')/dr - DT. The scaling properties of DL and 
DT near p c  and the relations for d ;  and d k  depend on the value of Pe and are given 
below. 

( i )  Let us first consider the limit Pe+O,  i.e. the limit of vanishing flow. In this 
regime mixing is caused by only molecular diffusion and D,  = DT = D, - ( p - p c )  V' 
for L > > t P ,  and D L = D T = D p - L - '  and d k = d k = d , = 2 + 9  for L < < & , .  Moreover, 

(ii) Consider now the opposite limit, namely, the limit of very large Pe. In this 
regime dispersion is caused only by convection and DL and DT are independent of 
molecular diffusion. Hence, mixing takes place only in flow through the backbone of 
the infinite cluster (since diffusion, which transfers the particles to the dead-end 
branches, does not exist). Therefore, DL and DT are linearly dependent on V, (Sahimi 
et a1 1986a, b) and we may write DL- L ,  V, and DT- L2 V,, where L ,  and L2 are two 
characteristic length scales. Near p c  the only relevant length scale is 6, and, thus, 
L, - L2 - 6, and hence DL - DT - [;-'B. Therefore, for length scales L << 6, we have 
DL- DT- L'-'B. We may rewrite these as d(Ax2)/dt - L 1 - @ ~  and d(y')/dr - L'-'B,  
which after integration yield (Ax') - t2'"*'~' and ( y 2 )  = (2') - t""+'BB' , which mean that 

(x2) - (x)'. 

d L =  d k =  li-8,. (4) 

Moreover, because d(x)/dt  - V,, we obtain (x)'- (x'). In two dimensions, CL = 1.3, 
pB -- 0.53 and v = and, thus, dk  = dk  3= 1.58. On the other hand, for three-dimensional 
networks p = 2, pB = 0.95, v = 0.88 and, therefore, dk  = d ;  = 2.2. Therefore, at high 
Peclet numbers and in two-dimensional networks, hydrodynamic dispersion gives rise 
to superdifusion, i.e. the mean-square displacements grow with time faster than linearly 
(because dk  = d :  < 2 ) ,  which is similar to turbulent diffusion (Grossman er a1 1985) 
for which d ,  = (in fact dispersion in this limit and turbulent diffusion are very similar). 
In contrast, for anomalous diffusion on percolating clusters we have d,(d = 2 )  = 2.87 
and d, (d  = 3) = 3.78. On the other hand, for d 3 6 ,  we have d ;  = d :  = 3. We remark 
that Ohtsuki and Keyes (1987) have also studied dispersion in the convective limit, 
using a renormalisation group method, and have argued that V, - 5;'~''. They have 
argued that V, varies in the same way as a sound velocity and thus V,-  ( K / X " ) ' " .  
However, this is not supported by numerical simulations (Sahimi and Imdakm 1988) 
and thus their proposed relation d b  = 1 + Os/2 may not be correct. 
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(iii) For relatively high values of Pe convection still dominates but the contribution 
of diffusion cannot be neglected. For example, if the porous medium contains regions 
of very slowly moving fluid (e.g., a boundary layer very close to the pore walls, or 
pores that are nearly perpendicular to the macroscopic pressure gradient) the tracer 
particles can escape such regions only by a combination of molecular diffusion and 
convection. In this limit, with no molecular diffusion, the mean transit time ( t )  of the 
particles is finite (since ( t ) -  V i ’ )  but ( t ’ )  is divergent, and DL+m. Introduction of 
molecular diffusion provides an effective cut-off and forces ( t 2 )  to remain finite. In 
this case, as the works of Saffman (1959) and Koch and Brady (1985) have shown, 
DL/ D,  - Pe In Pe and DT/ D, - Pe. Therefore, as far as scaling near p c  is concerned, 
equations (4) are still valid, although there are logarithmic corrections to DL and (Ax2). 

(iv) If the tracer particles spend a long time in the dead-end branches of the 
network then molecular diffusion becomes the dominating factor. Molecular diffusion 
in the dead-end branches also causes the velocity fluctuations experienced by the 
particles to become uncorrelated. For this case de Gennes (1983) has suggested that 
DL - ( D, - ti-’. Here we offer a very simple derivation of de Gennes’s result. 
From the work of Aris (1959) (who studied dispersion in long capillary tubes to which 
capillary tubes of various lengths, which contained stagnant fluids, were connected) 
we know that DL- V:. Dimensional analysis then leads us to write DL- V:T, where 
T is a characteristic timescale in  the dispersion process. Since diffusion into the 
dead-end branches is assumed to be dominant, T must be the characteristic time for 
exploring a dead-end branch which is given by T - D, - ,$re, which yields DL - (:-*. 
For L<< tP we can write d(Ax2)/dt - L2-* and d(y2)/dt = d(z2)/dt - L2-’ (since DL 
and DT have the same kind of dependence on Pe) which, after integration, yields 
(Ax2) - t’’* and ( y 2 )  = (z’) - t2”, which means that 

d L = d L = B .  

Since O(d = 2 )  = 0.87 and B(d = 3 )  = 1.78, equations (5)  predict that one has super- 
diffusion in both two and three dimensions. 

Equations (4) and (5) have an interesting consequence for the spectral dimension 
d,. The spectral dimension of a random walk process on a fractal is defined (Alexander 
and Orbach 1982) as d , = 2 d f / d , ,  where df is the fractal dimension of the system. 
Since for percolations clusters d r ( d  = 2 )  = 91/48 and d f ( d  = 3)  = 2.5, and for the back- 
bone dR(  d = 2 )  = 1.6 and dB( d = 3 )  = 1.9, the spectral dimension for case (iv) is d,( d = 
2)  = 4.34, d,(d = 3 )  = 2.82 and d,(d 3 6)  = 2,  whereas for cases ( i i )  and (i i i )  we have 
d,( d = 2 )  = 2 d H / d  I, = 2.02, d,( d = 3) = 1.74 and d,( d 3 6 )  = !, while for case (i) we have 
d, =: at all dimensions. Thus in contrast with anomalous diffusion for which 1 S d, zs 2 ,  
hydrodynamic dispersion can give rise to phenomena with d, > 2. The inequality d, > 2 
means that d k  = d L  < d f ,  which implies that the random walk of the particles is not 
recurrent. To the best of our knowledge, hydrodynamic dispersion studied here is the 
first physical example of a phenomenon with d,> 2.  

Two important quantities in diffusion and dispersion processes are P(x, y ,  z, t ) ,  the 
probability that a tracer particle is at the position r = (x, y ,  z )  at time t and Q(r, t ) ,  

the first-passage time distribution ( FFTD), which is the probability that a particle reaches 
r for the$rst time at time t. For macroscopically diffusive dispersion P(x, y ,  z, t )  obeys 
a Gaussian distribution and the mean concentration C is proportional to P. The FPTD 

is given by (Sahimi et a1 1986b) 

Q ( r ,  t ) =  L-’[&r, A ) / f i ( O ,  A ) ]  
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where @(r ,  A )  is the Laplace transform of P, A is the Laplace transform variable 
conjugate to t and L-’ denotes the inverse Laplace transform. However, for anomalous 
diffusion and dispersion P is not Gaussian and a CDE (or the diffusion equation) 
cannot properly describe these processes. For anomalous diffusion Guyer (1985) has 
suggested that 

( 7 )  

where vp = d, (d , -  1)-’ and a is a constant. Banavar and Willemsen (1984) and 
O’Shaughnessy and Procaccia ( 1985) have suggested another expression for P, but 
their expression is not supported by numerical simulations for percolation clusters 
(see e.g. Havlin et a1 1985). We propose that for anomalous dispersion, which cannot 
be described by a CDE, P is given by 

~ ( r ,  t )  - r c d J 2  e~p[-a( ( r l / t ”~- )”p]  

where a, 6 and y are constant. Here v b  = d L ( d L  - 1)-’ and v‘, = d‘,(dL - l)--’. Equation 
(8), which reduces to a Gaussian distribution for macroscopically diff usive dispersion 
(with d , =  d = 3 and v b =  v b =  2), should be valid for dispersion in cases (ii)-(iv), 
provided that the appropriate random walk fractal dimensions (equations (4) and (5)) 
and the spectral dimension are used. On the other hand, equation ( 6 )  is supposed to 
be valid for translationally invariant structures. For length scales L<< tp, the largest 
percolation cluster lacks translational invariance and is a fractal object. In this case, 
equation ( 6 )  does not hold for large A (small t ) .  However, we may expect that for 
large times the probability of being at a point at a given time will no longer depend 
on the origin of the walk (and this is especially true if there is diffusion into the 
dead-end branches) in which case equation (6) should hold. Thus equation (8) together 
with equations (6) and (7) can be used to determine Q(r ,  t )  for both anomalous 
diffusion and dispersion processes, although this has to be done numerically, since it 
seems difficult to derive an analytical expression for Q(r,  t ) .  

Finally, we must emphasise that equations (4), (5) and (8) are supposed to be valid 
in the anomalous regime. This regime is defined by a timescale T,, such that for t >> T, 
one should have macroscopically diffusive dispersion. The timescale T, is given by 
ra-@DL. Therefore, ra-.$’ for case (i), ra- for cases ( i i )  and ( i i i )  and 
T, - 6; for case (iv). In a future paper, we will report the results of Monte Carlo 
simulations of hydrodynamic dispersion near p c  to test the validity of our predictions. 

This work was supported in part by the National Science Foundation, grant CBT 
8615160 and the donors of the Petroleum Research Fund, administrated by the 
American Chemical Society. 
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